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synopsis 
The errors incurred in free-radical chain addition polymerizations through the use of 

the popular quasi-stationary state approximation (QSSA) under severe, bpt fairly com- 
mon, reaction conditions are examined in detail, and simple, useful criteria for appli- 
cability of the QSSA are proposed. The conditions examined are “dead end” poly- 
merization, polymerization with hindered termination and nonisothermal polymeriza- 
tion. It is concluded that the proposed criteria are reasonably accurate and that in 
most known free-radical polymerizations only hindered termination might possibly 
lead to appreciable errors through application of the QSSA. 

INTRODUCTION 

A familiar reaction scheme in chemical kinetics is the sequence 

k i  k t  
I-P*-P 

in which desired product P is formed from initial reagent I through inter- 
mediate P *. The rate of formation of product depends upon the concentra- 
tion of intermediate [P*], which must be found by solving its population 
balance 

Rc and R t  are rate functions for generation and destruction of the inter- 
mediate, respectively. We consider in the present study only cases in 
which 

Rt = ktl.J.1 (2b) 

Rt = kt[P*]’ (24 

and 

where v may have a value of either 1 or 2. 

mediate such as a free radical, ion, or catalyst complex. 

0 1972 by John Wiley & Sons, Ino. 

In many reactions conforming to scheme 1, P* is a so-called active inter- 
One manifestation 
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of an active intermediate is that [P*] is very small. A concomitant char- 
acteristic of reaction sequences involving active intermediates, called chain 
reactions, is the existence of a quasi-stationary state (QSS) in which 

Rf Rt. (3) 
Since eq. (2a) is often difficult or impossible to solve analytically, most 
kinetic analyses of chain reactions rely for computation of [P*] upon the 
so-called quasi-stationary state approximation (QSSA). The QSSA, which 
is often remarkably accurate, states that [P*] may be computed from an 
approximate algebraic expression 

While d[P*]/dt has been set equal to zero in eq. (2) in order to obtain eq. 
(4)) the QSSA does not assume that [P*] is constant with time. It merely 
asserts that the concentration of intermediates in chain reactions, even 
though they are time dependent, may be closely approximated by a simple 
relationship such as eq. (4), as long as d[p*]/dt is small with respect to the 
remaining terms in eq. (2). 

Chain-addition polymerizations take place through active intermediates 
according to a reaction sequence analogous to eq. (1) in which I is initiator 
and P is polymer, and their intermediates obey population balance (2). 
Consider, for example, the polymerization scheme 

kd 
I - R* initiator decomposition or 

kinetic chain initiation 
ki' 

R* + m - ml* 
kP 

polymer chain initiation 

m,* + m - m,+l* for z 2 1 (5) 

chain propagation 

chain termination 1 kt' 

k t  
R*-R 

m,* - m, for z 2 1 

However, it should be noted that scheme (5), unlike eq. (l), involves two 
reactants, I and m. It is customary to combine the termination reaction 
involving primary active intermediates, R*, with the two initiation steps 
into a single rate function by introducing an efficiency factor f .  The rate 
functions for termination and polymer chain initiation thus become, re- 
spectively, relation (2c) and 

Rr = v f k d  [I] = kf[m]"[I] (6) 
where 

m 

P*l= c h * l .  
x=l 

(7) 
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Since f is generally dependent upon monomer concentration [m], f k d  

is sometimes' replaced with the function kl[m]", where n is chosen in such a 
way as to describe the monomer dependence off. To simplify matters 
in the present study, we let n = 0 in eq. (6) and V f k d  = const. = k,, so that 
expression (6) reduces to (2b). It is now clear that the sum of all active 
polymeric intermediates, P*, as defined in eq. (7), obey eqs. (2). 

In the analysis of polymerizations, we are primarily interested in mono- 
mer conversion 

and number-average degree of polymerization 

where initiator and monomer obey the following rate equations: 

-- d[ll = k,[I] 
dt 

To determine CP and ZN rigorously, it is necessary to sox re eqs. (10) an1 (1 1) 
simultaneously with eq. (2), which contains [P*]. Their approximate 
values may be obtained via the QSSA by substituting [P*I8 from eqs. 
(2b) and (4) into eq. (11). This gives the "classical" result 

whose solution is substituted into eqs. (8) and (9). 
Numerous contributions have been made concerning the QSSA2" 

as well as higher-order approxirnations,?v8 of the solution of eq. 2 for 
active intermediate concentration. Only a few are cited in refs. 2-8. Of 
these, all have confined their analyses to isothermal reactor conditions, 
and three2-' have considered polymerization reactions. In all but one,' 
emphasis was placed on the errors incurred in the computation of [p*], 
through the application of approximations, without further consideration 
of how these errors might affect the subsequent computation of other 
kinetic variables such as ip and 5N. 

The following criteria have been proposed for the validity of the QSSA: 

k l /k*  >> 1 
when v = 14,6.8 and 

(13) 

(14) 
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when v = 2.8 These inequalities suggest that the QSSA might be violated 
when k ,  increases and/or k ,  decreases. The objective of the present study 
is to examine in more detail the validity and consequences of the QSSA 
when applied to chain-addition polymerizations, especially in three specific 
situations which commonly occur with free-radical (v = 2) polymerizations 
on an engineering scale. These situations, which represent severe reac- 
tion conditions, are: 

1. “Dead end” polymeri~ation,~~~ where k ,  in eq. (10) is large. 
2. Polymerization with hindered termination as in the “gel effect”1° 

and in precipitous polymerizations where k ,  is either very small and con- 
&anta or a rapidly decreasing function of time, k2(t).11 

3. Nonisothermal reactor conditions12 where k,(t) and k,(t) are both 
strong functions of time resulting frov their Arrhenius temperature de- 
pendence k = A exp(-E/RT) and the time-varying thermal history 
T(t)  which the polymerization experiences. 

THEORY 
The criteria ordinarily used to estimate whether or not the QSSA is 

valid have been that [P*] and the “relaxation time” required to reach 
[P*I8 both be small.8 Boudart6 has rephrased these on the basis of analyti- 
cal solutions of eqs. (2) and (10) for [P*] when v = 1. One of his criteria 
is inequality (13), which defines P* as an active intermediate and is equiva- 
lent to  requiring that its concentration be small. The other states that the 
QSSA may only be applied to reaction times which exceed the mean life- 
time of the active intermediates and that the latter is equal to the relaxa- 
tion time of the QSSA. 

Since the mean lifetime of active polymeric chain intermediates in addi- 
tion polymerizations, X,, is easy to estimate from physical considerations, 
we shall pursue this line of reasoning and require that reaction times t satisfy 
the inequality 

t > XP (15) 
in order for the QSSA to be applicable. 

We define (see Appendix) 

XP, = l/k, (16) 
when Y = 1 and 

XP, = ‘/dkik,[I]o (17) 
when v = 2. Either of these may be substituted into criterion (15), which 
clearly concerns itself with the range of applicability of the QSSA in reac- 
tion time. However, in order to formulate more practical criteria which 
relate to the range of conversion of reactants in which the QSSA is appli- 
cable, we also define (see Appendix) characteristic times for initiator deple- 
tion, X r ,  and monomer conversion, A,, as 

A( = l / k j  (18) 
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for both v = 1 and v = 2, 

when v = 1 and 

699 

(19) 

when v = 2. It is obvious that polymerization will cease when either re- 
actant, viz., I or m, has been used up. We shall refer to the extreme cases 
in which monomer disappears more rapidly than initiator as “Conventional” 
polymerization and its opposite, following Tobolsky, as “dead end” 
polymerization, and formulate criteria for their existence in terms of our 
characteristic times as follows : 

conventional polymerization 

X i  > Xm (21) 

Am > X i  (22) 

dead-end polymerization 

Thus, it is reasonable to expect the QSSA to be valid in dead-end poly- 
merizations when 

XP << X* (23) 

XP << Am. (24) 

and in conventional polymerizations when 

From inequalities (21) and (22) it is clear that both criteria (23) and (24) 
are actually satisfied once the relevant one is satisfied. 

By substituting appropriate definitions from among (16), (17), (18), 
(19), and (20) into inequalities (23) and (24), we can formulate QSSA 
criteria for conventional and dead-end chain polymerizations with v = 1 
or v = 2. In the present study we shall only be concerned with free-radical 
intermediates (v = 2) for which we summarize the criteria for the QSSA 
as follows: 

dead-end 
(ff S )  

conventional X,/Xp = Ic,/kp = p >> 1 
b > a> 
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However, we should note that criterion (23), together with definition (16) 
does agree with that of Boudarts for the case v = 1, and criterion (11) with 
that of Bowen et aL8 for the case v = 2. The latter authors, as well as 
Ray,4 with [m], replacing [I],, have made use of (11) but not of (111), 
which appears to be of considerable value in many free-radical polymerize 
tions since, as we shall learn, (11) is virtually impossible to violate even 
with dead-end initiation. 

In summary, then, we propose that the QSSA is valid over virtually the 
entire practical range of interest in a chain-addition polymerization from 
start to finish only when both criteria (11) and (111) are satisfied. If either 
one is violated, then the QSSA does not apply. For instance, if (11) is 
satisfied but not (111), then the QSSA may not be valid over the entire 
range of monomer conversion. Similarly, if (111) is satisfied and not (11), 
then initiator will be used up before all of the monomer has been converted 
to polymer, and a deviation from the QSSA may occur before polymeriza- 
tion ceases. We should also note from (I), (11), and (111) that, whereas 
the effects of a small value of k, all point in the same direction, viz., toward 
longer relaxation times and smaller ranges of applicability of the QSSA, 
a large value of k$ will actually shorten the relaxation time while still reduc- 
ing the range of the QSSA relative to initiator depletion. Moreover, the 
presence of [IlO in (I) and (11) should not be taken' too seriously since a 
rapid rate of initiation will produce a large deviation in [I] from its initial 
value and cause these criteria to become less well satisfied as polymeriza- 
tion proceeds. For instance, 99% depletion in initiator will increase Xp 
and reduce a by one order of magnitude from their values based upon [I],. 

These criteria are difficult to apply with any reasonable degree of ac- 
curacy to situations in which k, and k, are strong functions of time. Cer- 
tainly the behavior of nonisothermal polymerizations will be determined 
by the relative magnitudes of the activation energies for initiation, propa- 
gation, and termination, Et ,  E p  and I$,, respectively. It appears that the 
relaxation time of the QSSA at high temperatures will be shorter than 
that at low temperatures. However, if E ,  > E,, as is often the case, it is 
probable that the range of the QSSA with respect to initiator depletion 
will decrease with increasing temperature. 

COMPUTATIONS 

Dead-End Polymerization 

Equations (2a), (4), (lo), and (11) are written in dimensionless form by 
reducing concentrations and time to dimensionless variables with [Il0 
and At, respectively. Thus, 
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- I  I o = l  (27) 
dI 
dr  

- -  

Following Boudart,6 the error between the true and QSS values for [P*] 
is defined as 

€ = 1 - P/Ps. (29) 
The QSS value for monomer concentration is obtained from eq. (28) after 
replacing P with P,, 

m, = mo exp rf [exp (-i) - 11) 

and subsequently used in eq. (9) to calculate the QSS value of 5N. 

(25), (27), and (28) simultaneously. 
When the QSSA is not invoked, it is necessary to solve coupled eqs. 

Polymerization with Hindered Termination 

We use the following simple function to simulate the dependence of k ,  on 
ip:  

kl = kl, exp[-B@I (31) 
where k,, and B are adjustable constants. With the aid of expression 
(31), eqs. 25, 26, and 28 are modified to 

(32) 

P, = [I exp(B@)]l'/'/ao (33) 

d P  
- = I - ao2P2 exp[-Bip] 
dr 

dm - - ao2 m~ exp ( - ~ ( 1 -  E)} 
dr  B 

and m, is obtained by solving 

(34) 

When the QSSA is not invoked, eqs. (27), (S2), and (34) must be solved 
simultaneously. 

Nonisothermal Polymerizations 
For polymerizations with a nonisothermal temperature schedule, T(t), 

it is necessary to solve the following equations simultaneously : 

d P  
- = A i  exp[-EE,/RT(t)]I - A,[I]o exp[- EJRT(t)]P2 dt (36) 
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dI 
dt 

- - = A,exp[-EEJRT(t)]I 

dm 
dt A ,  [I 10 exp I --Ep/RT(t) I d  (39) - - =  

which are again versions of (2a), (4), (lo), and ( l l ) ,  only with their tem- 
perature dependence exposed. 

The QSS value for m is given by 

In ms - = -AP[I]0 {&}it exp[-EA/RT(t)]I'"dt (40) mo AJIIo 
where EA 3 Ep + (E, - E,)/2 = apparent activation energy from eq. (12). 

The temperature schedule used in this study was a linear one, 

T(t) = To + aT 

with two variations, or modes. They were: 

Mode A 
To = 400°K 

first: a = O.5"K/sec for 400 5 T _< 420°K 

then: a = -0.5"K/sec for 420 2 T > 373°K 

Mode B 
To = 402'K 

first: a = 0.7"K/sec for 402°K 5 T < 470°K 
then: a = 5"K/sec for 470°K _< T < 700°K 

Two sets of values were also used for the Arrhenius pair A,, Et. They 
were 1015 sec-', 32 kcal, and 1 sec-', 7 kcal. The first pair is typical 
for free-radical polymerizations, and the second pair was chosen for con- 
venience, but in such a way as to give the same value for k, as the first a t  
room temperature. 

Other kinetic parameters used in the computations, which are also 
typical in value, are: 

[mIo = 1 mole/l. 
[I10 = mole/l. 

A ,  = 1.25 X lo9 l./mole see 
Ap = lo' l./mole sec 
E ,  = 1.68 kcal/mole 
EP = 7 kcal/mole 
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"[ : 0;" : 0.4 : 0.6 . 0.8 . 

All numerical calculations were performed on a PDP-10 digital com- 
The Runge-Kutta fourth-order integration method was used to 

Integration step size as 
in dimensionless time (T) was necessary in some computa- 

puter. 
solve the simultaneous differential equations. 
small as 
tions to insure accuracy of results. 

1.0 

RESULTS AND CONCLUSIONS 

It is well known that for chain polymerizations via free-radical inter- 
mediates, the following represent typical kinetic parameters : 

kl - l./mole see 

k p  - lo4 l./mole sec 

k ,  - 108 l./mole see 

XP - lo-' to 10 see 

In carrying out the numerical computations for Figures 1-6, we have 
violated first LY by using large values for k, (Figs. 1 and 2), then p by using 
small values for k ,  (Figs. 3 and 4), and, finally, both LY and p (Figs. 5 and 6), 
while maintaining values for k p  and X p  as reasonable as possible in all cases. 
The errors in [P*] and fN resulting from the use of the QSSA, which were 
expected by virtue of criteria (11) and (111), are clearly shown. We shall 
assign to [I10 a value of loe3 mole/l. in all subsequent comparisons. 

I\ 0.6 

---- --. 
0 I 2 3 t 

z 

Fig. 1. Plot of e vs. T and cp for (Y = 10 and 6 = l o p .  
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In order to violate criterion (11), values for ki as large as lo3 were used, 
which further necessitated the use (Figs. 1 and 2) of exceptionally large 
values for k p  in order to achieve any discernible monomer conversion at 
the time of total initiator depletion. A by-product of this was the unusually 

2.4 

2.' 

el  1.4 
'0 
II 
2 

IH LL 

a8 

a4 

0 

Dotted Cwrer : QSSA 

$did Curves : Exact Solutms 

tXY/tI]. = 0.0s 
1 

0 I 2 3 4 

Fig. 2. Plot. of %N vs. T and 8 for a = 10 and f l  = 102. 

z 

Q 

E 

[I]/[IL - 0.97 
a2 -. 

0 
0 aoi 0.02 0.0s 0 

z 
Fig. 3. Plot of e vs. T and *, for (I = 1 0 2  and f l  = 1. 
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> 

z 
Fig. 4. Plot of ZN vs. T and for 01 = lop and 0 = 1. 

Q 
0 0.2 0.4 0.6 0.8 1.0 

0 1.0 2.0 3.0 4.0 5.0 

z 
Fig. 5. Plot of E vs. T and @for a = 1 and 0 = 1. 

small value for XP which resulted. The kinetic constants used in Figures 
3 and 4 were more reasonable since values for ks of lo-* (ref. 9) and for k, 
as low as lo4 (refs. 3,13) have previously been reported. Moreover, even 
with such small values for k,, [P*] did not attain avalue far in excess of 10" 
mole/l., which is probably acceptable. 
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Dotted Curves : QSSA 

Solid Curves : Exact Solutions 

0 
0 I 2 3 4 

z 
Fig. 6. Plot of %N vs. 7 and +for n = 1 and @ = 1. 

- 

T 
0.2 0.3 0.4 0 0. I 

t (sec) 

Fig. 7. Relaxation of the QSS error aith time. 

Figures 7-9 represent more realistically than previous figures the phe- 
nomenon called “dead end” polymerization (large k J  which has been ob- 
served for values of ki - and lcp - 108 (ref. 9). Relaxation to the QSSA 
is seen in Figure 7 to occur a t  shorter times, as predicted by criterion (I), 
the larger is the value of k f .  Notwithstanding this, the range of applica- 
bility of the QSSA decreases, as shown in Figure 8 and predicted by 
criterion (11). We should point out, however, that neither criterion (11) 
nor (111) is actually violated in dead-end polymerization so that the QSSA 
actually applies. This is verified by its negligible effect on accuracy in 
our predictions of ZN with monomcr conversion in Figure 9. The abrupt 
deviations from zero error in Figure 8 are due to the total depletion of 
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0 az 0.4 0.6 0.8 
* 

I 

[X I  0.0025 
f 
6 8 10 I2 I4 16 I0 0 2 4  

z 
Fig. 8. Plot of Q vs. 7 and * for “dead-end” polymerization. 

z 
10-4 163 lo-= 10‘‘ I lo 

0 0.1 0.2 0.5 0.4 a 5  0.6 0.7 0 . D  

Q, 
Pig. ‘3. Plot of %N vs. 7 and cp for “dead-ejid” polymerization. 

9 
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. . . Dotted Curvet : QSSA . 
sold Curves: EKffit Solutions . . . . . 

' . 
. . 

'. . '. 

i l l  62 dS & AS 0.6 d7 0:q 0.4 

Fig. 10. Plot of ZN vs. cp for hindered termination with low constant kt. 

0.8 0 0.2 94 4.6 I 

Q, 
1+0 I 

z 
Fig. 11. Plot of E vs. T and Q, for hindered termination with kt = k b  exp ( -B@).  

initiator at  the corresponding monomer conversions, and the large errors 
in 3?N in Figure 9 are artifacts created by plotting the logarithm of time. 
They represent amplifications of the relaxation process and would not be 
visible at  all if h e a r  time were used instead. In order to violate criterion 
(11), it is necessary to use unreasonably large values of ki. Ray,4 for 
instance, concluded in effect that the QSSA was not valid for values of the 
kinetic constants equivalent to k ,  - lo2, k p  - lo3, and Ict  - lo8. 
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The effect of hindered termination on predictions of & via the QSSA is 
shown in Figure 10, whose curves were computed using constant but low 
values for k,. It is seen that significant errors are possible over a major 
portion of the range of monomer conversion aa correctly predicted by 

h 
0 200 300 400 500 600 700 100 

t (MINI 
Fig. 12. Simulation of diffusion-controlled termination with k: = ku exp (-BQi). 

QI 
0 0.2 a4 0.6 9.8 

I 
t .- 

/’ 
, 

I Dotted Curves 1 QSSA 

Solutions 

0 ox)\ 0.02 0.03 C 14 

z 
Fig. 13. Plot of 3~ vs. 7 and Qi for hindered termination with k: = kt,, exp (-8Qi). 
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--== . - -- - - - 0.04 

MODE A 
Dotted CurveSi USSA 

Sohd Curves: Exact Solutions 

Q = 0.01 

I 10 10% 

t (sec) 

Fig. 14. Plot of ZN vs. t for nonisothermal polymerization (mode A). 

I 1 

8 .  
MODE B 
Dotted Curves: QSSA 

Solid Cutves: Exact Solutions 7 .  

3 a '  /----- 

10 102 
L 

I 
t (sec) 

Fig. 15. Plot of ZN vs. t for nonisothemal polymerization (mode B). 
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30 
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criterion (111). A similar approach has been used to explain the auto- 
accelerating rate observed in vinyl chloride  polymerization^.^ 

An alternate model for hindered termination in poly(viny1 chloride) 
formation utilizes a function for k, which decreases with time11r14 to simu- 
late the onset of diffusion-controlled termination. We have used a simple 
exponential function for this purpose, expression (31)) with adjustable 
parameters k,, and B. This function has been found to be suitable for 
fitting experimental rate curves in precipitous polymerizations which 
exhibit autoacceleration.'6 The results are shown in Figures 11-13 for 
various values of B and with /3 based on kt,. as an ac- 
ceptable upper limit for [P*] up to very high monomer conversions, then 
B must be assigned a value between 10 and 14 when k,, = 108. Significant 
errors in 5 5 ~  due to the QSSA do not appear until B approaches a value of 
14, and then only a fairly high conversions. 

Figures 14 and 15 show the effect of the QSSA on predictions of 5 5 ~  for 
two different temperature schedules, mode A and mode B, and two dif- 
ferent Arrhenius pairs, A, and E,, for k,. While lot6 and 32 are reaaon- 
able values for the preexponential constant and activation energy, re- 
spectively, they cause a rapid initiation rate and thus do not permit high 
conversions to be attained. Another manifestation of rapid initiation is 
a minimum in 3N versus time (curves 1). The other Arrhenius pair, which 
contains an exceptionally small activation energy, 7, was used in order 
to achieve higher monomer conversions by reducing the initiation rate. 
It also causes 5N to  increase in time (curves 2). The temperature policies 
were chosen so as to  be as severe as possible and to simulate axial tempera- 
ture profiles predicted for chain polymerizations in tubular reactors12 
under nonrunaway (mode A) and runaway (mode B) conditions. 

Deviations in 55N from true values, accrued through the use of the QSSA, 
are seen to be surprisingly small, even when observed in time rather than as 
a function of a. Moreoever, relaxation times for the QSSA are actually 
shorter at high temperatures than at  low temperatures, which is predictable 
from criterion (I), at least qualitatively, since E ,  > E,. In conclusion, 
then, we have shown that the use of the QSSA in chain-addition poly- 
merizations may lead to errors when termination is severely hindered,3 but 
appears to be quite justified under other conditions of practical interest; 
these are dead-end polymerization and even polymerization with rapid 
changes in temperature. 

Appendix 

If we insist on 

We define Xi, Am, and Xp in the following equations: 
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and Rp, the rate of polymerization or monomer conversion, aa 

RP - kp[ml~[P*l. 

If the QSSA is valid, then 

Rf N kr[P*]” 

and [P*] ia approximately given by 

Expressions (A-4), (A-5), and (A-7), when substituted into definitions (A-1) to (A-3), 
form the bases for definitions (16)-(20) and subsequently for our criteria, which are 
thus seen to be at  least necessary conditions for the QSSA. It is reassuring, however, 
that the exact solutions of eqs. (2) with constant [I] = [I10 for Y = 1, 

kiV10 
kt 

[P’] = - [I - exp(-k&)] 

and for Y = 2, 

[P*] = [y]’” tanh [k&t[I]~]l/zt (A-9) 

would lead us quite naturally to definitions (16) and (17), respectively. Moreover, our 
criterion for dead-end polymerization, inequality (22), becomes, after substitution of 
delinitions (18) and (20), 

(A-10) 

Finally, criteria for the QSSA may be interpreted and generalized in tenns of the 
population balance for intermediates, eq. (2). First, reduce the concentrations in eq. 
(2) to their dimensiodess fonns by di*ding by either [ m ] ~  or [I]o. The choice is ar- 
bitrary. Second, reduce time to its dimensionless form by dividing by either Am or b, 
whichever is smaller in value. This leads to the dimensionless ditrerential equation, e.g., 

where the concentrations have been reduced with [I], and where 

conventional polymerization 
t /&  for dead-end polymerization 

7 = t / h  = 

From (A-11), the QSSA 
IllV 

p = -  

(A-11) 

(A-12) 
a 

is valid when 

2 << 1. (A-13) x 
It is clear that eq. (A-12) reduces to (4) when v = 2 and that inequality (A-13) reduces 
to criteria (11) and (111). 
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Noh added in proof: It has come to the attention of the authors after completion 
of this work that Stockmeyer (J. Chem. Php. ,  12, 148 (1944)) has suggested criteria 
equivalent to eqs. (24) and (111) based upon characteristic times similar to eqs. (17) 
and (20). 

This work waa supported by the Office of NavaI Research. 

References 
1. Z. T a b o r  and J. A., Biesenberger, J. Polym. Sci., B3,753 (1965). 
2. C. H. Bamford, W. G. Barb, A. D. Jenkins, and P. F. Onyon, The Kinetics of 

Vinyl Polymerization by R a d i d  Mechanisms, Butterworths, London, 1958. 
3. M. Magat, J. Polym. Sci., 16,491 (1955). 
4. W. H. Ray, Can. J. Chem. Eng., 47,503 (1969). 
5. S. W. Benson, J. C h .  Phys., 20,1605 (1952). 
6. M. Boudart, Kinetics of Chemical Processes, Prentice-Hall, Englewood Cliffs, 

7. J. C. Giddings, J. Chem. Phys., 26,1210 (1957). 
8. J. R. Bowen, A. Acrivos, and A. K. Oppenheim, Chem. Eng. Sci., 18,177 (1963). 
9. A. V. Tobolsky, J. Amer. Chem. SOC., 80,5927 (1958). 

1968. 

10. J. H. Duerksen, and A. E. Hamielec, J. Polym. Sci., C25,155 (1968). 
11. A. Schindler, and J. W. Breitenbach, Ric. Sci., %A, 34 (1955). 
12. R. Cintron-Cordero, R. Mostello, and J. A. Biesenberger, Can. J. Chem. Eng., 

13. M. Magat, J. Polym. Sci., 19,583 (1956). 
14. J. D. Cotman, M. F. Gonzaler, and G. C. Claver, J .  Polym. Sci. A-2, 5 ,  1137 

15. P. Rathke, Owens-Illinois, Toledo, Ohio, private communication. 

46,434 (1968). 

(1967). 

Received July 27, 1971 




